The Milnor Conjecture

نویسنده

  • V. Voevodsky
چکیده

3 Motivic cohomology and algebraic cobordisms. 21 3.1 A topological lemma. . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Homotopy categories of algebraic varieties . . . . . . . . . . . 25 3.3 Eilenberg-MacLane spectra and motivic cohomology. . . . . . . 30 3.4 Topological realization functor. . . . . . . . . . . . . . . . . . . 33 3.5 Algebraic cobordisms. . . . . . . . . . . . . . . . . . . . . . . . 34 3.6 Main theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

M ay 2 00 9 Monotonicity of entropy for real multimodal maps ∗

In [16], Milnor posed the Monotonicity Conjecture that the set of parameters within a family of real multimodal polynomial interval maps, for which the topological entropy is constant, is connected. This conjecture was proved for quadratic by Milnor & Thurston [17] and for cubic maps by Milnor & Tresser, see [18] and also [5]. In this paper we will prove the general case.

متن کامل

S ep 2 00 7 A counterexample to generalizations of the Milnor - Bloch - Kato conjecture ∗

We construct an example of a torus T over a field K for which the Galois symbol K(K;T, T )/nK(K;T, T ) → H(K,T [n] ⊗ T [n]) is not injective for some n. Here K(K;T, T ) is the Milnor K-group attached to T introduced by Somekawa. We show also that the motiveM(T×T ) gives a counterexample to another generalization of the Milnor-BlochKato conjecture (proposed by Beilinson).

متن کامل

Milnor K-group Attached to a Torus and Birch-tate Conjecture

We formulate (and prove under a certain assumption) a conjecture relating the order of Somekawa’s Milnor K-group attached to a torus T and the value of the Artin L-function attached to the cocharacter group of T (regarded as an Artin representation) at s = −1. The case T = Gm reduces to the classical Birch-Tate conjecture.

متن کامل

On a Conjecture of Milnor about Volume of Simplexes

We establish the second part of Milnor’s conjecture on the volume of simplexes in hyperbolic and spherical spaces. §

متن کامل

A counterexample to generalizations of the Milnor - Bloch - Kato

We construct an example of a torus T over a field K for which the Galois symbol K(K;T, T )/nK(K; T, T ) → H(K,T [n] ⊗ T [n]) is not injective for some n. Here K(K; T, T ) is the Milnor K-group attached to T introduced by Somekawa. We show also that the motive M(T×T ) gives a counterexample to another generalization of the Milnor-BlochKato conjecture (proposed by Beilinson).

متن کامل

Isoperimetric Inequalities and the Friedlander–milnor Conjecture

We prove that Friedlander’s generalized isomorphism conjecture on the cohomology of algebraic groups, and hence Milnor’s conjecture on the cohomology of the complex algebraic Lie group G(C) made discrete, are equivalent to the existence of an isoperimetric inequality in the homological bar complex of G(F ), where F is the algebraic closure of a finite field.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996